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Abstract--An idealized representation of  the interaction of  spherical particles with turbulent eddies of  
comparable length scale is considered by means of a three-dimensional, unsteady finite-difference 
Navier-Stokes solution of the interaction between a fixed rigid sphere and a pair of advecting vortex tubes. 
Initially the sphere is suddenly placed in the flow and held fixed in space. First, a doubly symmetric 
interaction with vortices of opposite rotation is considered. The resulting time-dependent drag differs from 
the drag in axisymmetric flows; however, the lift and torque on the sphere remain zero. Next, an 
interaction with two vortices of like rotation is studied. Here, non-zero lift and torque, as well as drag 
deviation from the axisymmetric case occur and would result in a deflection in the trajectory of a nonfixed 
sphere. The flow in this case behaves like that of a single vortex. Finally, a linear array of like-rotating 
vortices, interacting with a freely moving sphere, is considered. The two-dimensional deflection depends 
strongly upon the sphere/fluid density ratio and initial sphere Reynolds number. Lift and moment 
coefficients are shown to be linearly proportional to the maximum induced velocity due to the vortices. 
Moment coefficients are an order of magnitude less than lift coefficients. Copyright © 1996 Elsevier 
Science Ltd. 
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1. I N T R O D U C T I O N  

The interactions between vortical structures and spherical particles or droplets is o f  pr imary 
practical interest in many  particle-laden flows. These interactions modify  the trajectories o f  
individual particles and cause dispersion in a spray or  cloud. Also, they can modify heat and mass 
transfer rates for the particles. There has been long-term interest in the effects o f  turbulent eddies 
which contain mos t  the energy and whose sizes are orders o f  magni tude  larger than the particle 
diameters. For  example, extensive research has been performed to characterize the interaction 
between solid particles and turbulent  shear flows (Chung and Trout t  1988; Crowe et al. 1988; Tang 
et al. 1992; Mart in  and Meiburg 1994). 

However ,  a need exists to study the interactions o f  a particle with vortical structures that  are 
smaller than,  comparable  in size to, or only a few times larger than the sphere. These small 
structures have the potential  to produce the largest modifications to the boundary  layer and near 
wake o f  the sphere. For  example, our  recent study (Kim et al. 1996) on the interaction between 
a spherical particle and a relatively large vortex (ratio o f  initial vortex diameter to particle 
diameter  = 200) shows that  the lift force on the particle due to a large vortex is much smaller than 
that  due to a small vortex as will be shown in the present paper. Birouk et al. (1996) experimentally 
investigated turbulence effects on the vaporizat ion o f  m o n o c o m p o n e n t  single droplets in a chamber  
producing zero mean  velocity, homogeneous  isotropic turbulence. The largest eddy size in this 
experiment is five times the droplet  diameter. They found that  the turbulence strongly enhances 
droplet  vapor izat ion rates. However ,  the forces on the droplet  were not  measured. 

In this paper,  an idealized representat ion o f  those interactions is made by considering the viscous, 
incompressible, unsteady, three-dimensional flow associated with a pair  o f  initially cylindrical 
vortex tubes advecting past  the sphere. Initially the sphere is suddenly placed in the flow and held 
fixed in space. This study builds upon  the previous study o f  Kim et al. (1995), hereafter identified 
as KES. In that  paper,  the authors  examined the unsteady, three-dimensional interactions between 
a single advected cylindrical vortex tube and a fixed spherical particle whose diameter is o f  the same 
order  o f  magni tude  as the initial diameter  o f  the vortex. That  study served as a first step towards 
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better understanding the two-way interactions between small-scale turbulence and the particle. 
The extension to the case where there is sequential interaction with many eddies is 
straightforward; the results from the interaction with one eddy can be pieced together as 
time advances. Here we extend this work to study the interactions between a pair of advected 
vortex tubes and a stationary spherical particle. Clearly, the turbulence-particle interaction 
involves several eddies simultaneously influencing the particle and being influenced by the 
particle. For  that reason, it is sensible to make the extension of this paper. The practical 
problem involves a wide variety of possible configurations, all of  which cannot be covered in 
one study. We attempt to maximize the value of this study by considering both co- 
rotating and counter-rotating eddies and by varying the initial distance between the 
eddies. 

In the earlier study (KES) the particle Reynolds number based on the freestream velocity and 
the particle diameter was in the range 20 ~< Re -%< 100. The initial size of  the cylindrical vortex tube 
was in the range 0.25 ,G< rr ~< 4, where cr is the radius of the vortex tube normalized by that of the 
particle. We found that the maximum positive lift coefficient and the rms lift coefficient of the 
sphere are linearly proportional to the circulation of the vortex tube at small values of  a. However, 
at large values of  a, they are linearly proportional to the maximum induced velocity due to the 
vortex tube but independent of a. 

In the present paper, both co-rotating and counter-rotating vortical pairs are considered. In the 
counter-rotating case, only a symmetric configuration (see figure 1) is examined. Asymmetric 
configurations with counter-rotations are left for future studies. More attention is given to 
co-rotating pairs because they have the greatest effect on lift and torque. We expect, therefore, that 
deflections in the trajectories and dispersion of  sprays and clouds will be greater in this case of 
co-rotation. The case of a 'train' of  vortices advecting past the sphere at prescribed intervals is also 
examined. 

Our specific objectives are to study: 

(1) the detailed flow field behavior during interaction of  a pair of vortex tubes with each other 
and with the sphere, 

(2) the relationship between the lift coefficient of the sphere and the maximum induced velocity 
due to the two vortex tubes, 

(3) the modification of the drag force caused by the interactions, 
(4) the effects of Reynolds number, vortex size, and initial offset distance of the vortex, 

and 
(5) the sphere deflection caused by the interaction with the vortices. 
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/ v o r t e x  tube 
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Y 
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Figure 1. Flow geometry and coordinates: two counter-rotating cylindrical vortices are being advected 
toward a fixed sphere, x - z  is the principal plane, and y - z  is the reference plane. 
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The detailed study of  the interactions between the particle and the unsteady velocity field 
provides fundamental information about the flow behavior that can be used in developing 
mathematical models for particle-laden flows. The next section provides a mathematical description 
of  the flow considered, the governing equations, and the numerical solution procedure. Section 3 
discusses the results including the numerical accuracy issues, the effects of  varying the parameters 
listed above, and the trajectories of a moving spherical particle interacting with an array of  vortex 
tubes of  co-rotation as an extension of  the results of KES and the present study. Section 4 provides 
a summary and concluding remarks. 

2. PROBLEM STATEMENT AND FORMULATION 

2.1 .  F l o w  descr ip t ion  

Consider the time-dependent, three-dimensional, incompressible, viscous flow interactions 
between a pair of  symmetric, initially cylindrical vortex tubes and a solid sphere. The vortex tubes 
are moving with the laminar free stream, and a sphere is suddenly placed and held fixed in space 
as shown in figure 1. The initial offset distance, don, denotes the shortest distance between the initial 
vortical axis and the y - z  plane which is parallel to the free stream. All the variables are 
nondimensionalized using the sphere radius a~ as the characteristic length and U" as the 
characteristic velocity, where the subscript ' denotes dimensional quantity. The two vortex tubes, 
having equal diameters of the order of  the sphere diameter, are initially located 10 sphere radii 
upstream from the center of the sphere. The effects of the vortex tubes on the sphere are negligible 
at this initial distance because the magnitude of the initial velocity field induced by the vortex tubes 
is less than 2% of  the free stream velocity. Far upstream, the flow is uniform with constant velocity 
U~k parallel to the y - z  plane. There is one symmetry plane, the x - z  plane, as seen in figure 1. 
A second symmetry plane (y-z )  exists only when the two vortices have counter-rotations. Our 
general formulation does not take advantage of  this second symmetry. 

Note that, later in section 3.4, the fixed sphere results will be employed in a moving sphere 
trajectory analysis. 

Two coordinate systems are used in our formulation following KES: the Cartesian coordinates 
(x, y, z) and the nonorthogonal generalized coordinates (~, q, ~). The origin of  the former coincides 
with the sphere center. ~ is the radial, q is the angular, and ( is the azimuthal coordinates. The 
nonorthogonal generalized coordinate system can be easily adapted to three-dimensional arbitrary 
geometries. In the present study, a spherical domain is used, and the grid reduces to an orthogonal, 
spherical grid. The grids are denser near the surface of  the spherical particle, and the grid density 
in the radial direction is controlled by the stretching function developed by Vinokur (1983). Due 
to symmetry, the physical domain is reduced to a half spherical space. The domain of  the flow 
is bounded by 1 ~< ~ ~< N~, 1 ~< r/~< N2, 1 ~< ( ~< N3, where ~ = 1 and N~ correspond, respectively, 
to the sphere surface and the farfield boundary surrounding the sphere; q = 1 and N2 denote, 
respectively, the positive z-axis (downstream) and the negative z-axis (upstream); ( - -  1 and N3 
refer, respectively, to the x - z  plane in the positive x-direction and the x - z  plane in the negative 
x-direction. Uniform spacing (6~---6r/= ~( = l) is used, for convenience, for the generalized 
coordinates. 

The initial vortex tubes have a small core region with a radius tr (normalized by the sphere 
radius). This core is defined such that the initial velocity induced by the vortex tube approaches 
zero as the distance from the center of  the vortex tube goes to zero, and at distances much greater 
than tT, the induced velocity approaches that of a point vortex. We use the vortex tube construction 
of  Spalart (1982), which has the following stream function: 

~v(x, z, t = 0) = -- F j  ln[(x -- xj) 2 + (z - zj) 2 + ix2], 
2zc 

where Fj is the nondimensional circulation around the vortex tube at radius t7 and at the initial 
time. Fj is positive when the vortex tube rotates counterclockwise, and xj and zj denote the location 
of  the center of  the vortex tube. The circulation around a circular path far away from the center 
of  the vortex is given by FJ, = 2Fj. Each vortex tube can be viewed as an evolution from the point 
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vortex due to the cylindrical viscous diffusion. The stream function for a pair of  vortex tubes is 
given by 

k F; ln[(x - x;) 2 + (z - Z,) z + E].  O~(x, z, t = 0) = - 
[ ~  1 

[11 

2.2. Governing equations and boundary conditions 

The continuity and momentum equations and the initial and boundary conditions are 
nondimensionalized using the sphere radius E as the characteristic length and U~ as the 
characteristic velocity. 

V.V = 0 [2a] 

R5 0~- + V.VV = - Vp + V2V. [2b] 

The governing equations [2a] and [2b] are cast in terms of the generalized coordinates (~, q, () to 
treat a three-dimensional body of arbitrary shape. The numerical integration is performed using 
a cubic computat ional  mesh with equal spacing (a~ --- 6q = 6f = 1). 

The velocities on the sphere surface are zero due to the no-slip condition, and the pressure on 
the sphere is obtained from the momentum equation. 

The boundary conditions are 

Op_ 2 EV,, 
On Re On 2 ' u = v = w = 0  a t e =  1, [3a] 

p = 0, u = v = 0, w = 1 at ~ = Nl and N2mid ~ /7 ~ N2 (upstream), [3b] 

0u 0v 0w 
p = 0, 0~ - 04 - 04 - 0 at ~ = Nl and 1 ~< t/~< N2mid (downstream), [3c] 

0p _ 0u 0w 
- - 0 ,  v = 0  at f =  l and N3, [3d] 

0( 0~ 0( 

where u, v, and w are the velocities in the x, y, and z direction, respectively, V? is the velocity in 
the direction normal to the sphere surface, and p is the pressure, n denotes the direction normal 
to the sphere surface, 0/0n = x/¢ 2 + ¢~2 + ¢~0/0¢, and q = N:m~d denotes the mid-plane between 
q = 1 and N2. Equation [3d] corresponds to the symmetry conditions and zero v velocity in the 
x-z symmetry plane. Conditions guaranteeing continuity in the r/direction for p, u, v, and w on 
the axes q = 1 and r / =  N2 are also imposed. 

In order to start the numerical solution of [2a] and [2b], we provide initial velocity field by 
superposing the flow fields due to the uniform stream and the vortex tubes in addition to the no-slip 
condition on the sphere surface: 

0¢v a0v po=O, u0= 0 z '  v 0 = 0 ,  w0-- 1 + ~ e x c e p t a t ¢ =  1 [4a] 

p 0 = 0 ,  u 0 = v 0 = w 0 = 0  a t e =  I, [4b] 

where ~v is given by [1], respectively. 
The initial pressure is estimated as zero over the whole computational domain. This estimation 

is corrected by the pressure correction equation and iteration procedure (see section 2.3 for details). 
The only nondimensional groupings appearing in the equations and initial and boundary 

constraints are the sphere Reynolds number, vortex tube radius, offset distance, and vortex 
circulation (or vortex Reynolds number). 

The equations evaluating the drag, lift, and moment  coefficients are given in KES and thus will 
not be repeated here. The lift force is assumed positive when it is directed toward the positive x-axis. 
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Due to symmetry, only the y-component  of the moment is non-zero and is assumed positive in 
the counter-clockwise direction. 

2.3. Numerical solution 

A three-dimensional, implicit, finite-difference algorithm has been developed to solve 
simultaneously the set of the discretized partial differential equations. The method is based on an 
alternating-direction-predictor-corrector (ADPC) scheme to solve the time-dependent Navier-  
Stokes equations. ADPC is a slight variation of  alternating-direction-implicit (ADI) method and 
implemented easily when embedded in a large iteration scheme (Patnaik 1986; Patnaik et al. 1986). 
The control volume formulation is used to develop the finite-difference equations from the 
governing equations with respect to the generalized coordinates (4, q, O- One of  the advantages 
of  the control volume formulation is that mass and momentum are conserved over a single control 
volume, and hence the whole domain regardless of  the grid fineness. An important part of solving 
the Navier-Stokes equations in primitive variables is the calculation of the pressure field. In the 
present work, a pressure correction equation is employed to satisfy indirectly the continuity 
equation (Anderson et al. 1984). The pressure correction equation is of  the Poisson type and is 
solved by the successive-over-relaxation (SOR) method. 

The overall solution procedure is based on a cyclic series of guess-and-correct operations. The 
velocity components are first calculated from the momentum equations using the ADPC method, 
where the pressure field at the previous time step is employed. This estimate improves as the overall 
iteration continues. The pressure correction is calculated from the pressure correction equation 
using the SOR method, and new estimates for pressure and velocities are obtained. This process 
continues until the solution converges at each time step. Overall convergence is achieved when the 
sum of  the magnitudes of  residuals of the pressure correction equation diminishes to about l0 -6. 
Since the initial guess for the pressure change is zero at every iteration, convergence of  the pressure 
correction equation provides an indication that the overall convergence has been achieved. 

3. RESULTS AND DISCUSSION 

In sections 3.1 and 3.2, we discuss the three-dimensional interactions of  a sphere and a pair of 
vortex tubes of  counter-rotation. In section 3.3, we examine the three-dimensional interactions of 
a sphere and a pair of  vortex tubes of co-rotation. In section 3.4, we investigate the trajectories 
of  a moving sphere interacting with an array of vortex tubes of  co-rotation. 

Testing the accuracy of  our numerical solution has been performed and discussed earlier in KES. 
The 51 x 51 x 51 grid in a computational domain with an outer boundary located at 21 sphere 
radii from the sphere center is used in the following calculations. The run for the interaction 
between a single vortex tube and a sphere at Reynolds number 100 with the 51 x 51 × 51 grid 
required 4.95 mega words, a dimensionless time step of  At = 0.002, and a total time of 4 cpu h on 
Cray C-90 for the final time of  tf = 24.5. Each time step takes about 1.18 cpu s. 

3.1. Interactions o f  a sphere and a pair o f  vortex tubes with top-positive and bottom-negative 
circulations 

We consider the interactions of  a pair of  vortex tubes advected by the free stream and a sphere 
suddenly placed in the flow and held fixed in space. The two cylindrical vortex tubes are initially 
of  the same size and rotating opposite to each other with top-positive and bottom-negative 
circulations as shown in figure 1. The y - z  plane is half way between the two tubes so that the offset 
distance of  one vortex tube is the negative of the offset distance of  the other. The center of  each 
vortex tube is located at l0 sphere radii upstream from x - y  plane containing the center of the 
sphere. The base case calculation is that of  Re = 100, dog = + 1.5, and tr = 1. 

Initially, each vortex tube has its maximum induced velocity Vm~x located at the edge of the core. 
Because the velocity and vorticity fields induced by one vortex tube influence those by the other, 
the total maximum induced velocity, Vmax,, due to the two vortex tubes depends on their size and 
separation distance and is in the range 0 < Vmxt ~< 2v . . . .  The total maximum induced velocity Vmax, 
equals zero when [don[ = 0, 2Vmax when Idogl = a ,  and Vmax when Idogl>> 1. For example, vmx~ is 0.738 
for Vm~x = 0.4, dog = + 1.5, and tr = 1. The base case calculation is that of Re = 100, dog = + 1.5, 
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and ~r = 1. Note that the lift and torque on the sphere are zero due to the flow symmetry in upper 
and lower regions of the sphere. 

In order to describe the flow structure, we first consider the pseudo-streamlines and vorticity 
contours in the x z symmetry plane, defined as the principalplane, where the strongest interactions 
occur between the vortical structures and the sphere. The y-z  plane containing the front and rear 
stagnation points in the standard axisymmetric flow over a single sphere will be used as a reference 
plane (figure 1). We refer to the region above that plane as the 'upper' region and that below the 
plane as the 'lower' region. 

The pseudo-streamlines are obtained from the pseudo-stream function which is defined by 
assuming that the velocity field in the principal (x-z)  plane does not change in the direction normal 
to that plane and by using the two-dimensional stream function definition as follows 

i 
r 

~ps(r, 00) = ffp~(r0, 00) + -- Uo dr. 
0 

The sphere surface in the principal plane is used as a reference streamline (~Ops = 0). We note that 
a real stream function @ cannot be defined and calculated from the velocity in the principal plane 
due to the existence of a divergence associated with the third component of velocity. Nevertheless, 
for descriptive purposes only, it is convenient to use the two-dimensional stream function definition 
to present descriptions of the flow pattern. 

Figure 2 (a ) ( f )  display the pseudo-streamlines (left column) and the contour lines of 
y-component  vorticity (right column) in the principal plane at t = 0, 3, 6, 9, 12, and 15 for 
Re = 100, do,.= -+ 1.5, cr = 1 with /) . . . .  =0.738 (Vmax =0.4) .  The contour values of the 
pseudo-streamlines are 0, _+0.02, _+0.1, _+0.3. The contour values of the vorticity are _+0.4, _+0.8, 
_+ 1.4, _+ 2, with the highest magnitude at the sphere surface. 

Comparing the vorticity contours in figure 2(a)-(f) with those of the single vortex tube in figure 
5 of KES, we see that the two vortex tubes move downstream faster than the single vortex. This 
additional acceleration occurs because the velocity magnitude at the center of each vortex tube 
equals that of the base flow plus that induced by the other vortex tube. 

The distance between the top pseudo-streamline and the bottom pseudo-streamline in figure 
2(a)-(c) is narrower on the segment connecting the vortex tube centers than any other place along 
the stagnation pseudo-streamline. This indicates that the velocity near the middle of the segment 
between the vortex tube centers is higher than any other place along the stagnation 
pseudo-streamline. The induced velocity due to the vortex tubes is added to the base flow near the 
stagnation pseudo-streamline. 

Figure 3 shows the drag coefficients of the sphere as a function of time for the same parameters 
as above. The drag coefficients are obtained with four different total maximum induced velocities 
due to the vortex tubes, Vmaxt = 0.185, 0.369, 0.554, and 0.738 (Vmax = 0.1, 0.2, 0.3, and 0.4). The 
temporal behavior of the drag coefficients is different from that of the case of  the pair of  vortex 
tubes of  co-rotation as will be shown in section 3.3. The time-averaged value of the deviation of 
the drag coefficient from that of the axisymmetric flow past a sphere for all values of Vm,~t is not 
negligible and increases linearly with v ..... The time-averaged drag coefficient CD .... may be 
expressed by 

C D  . . . .  = C D , a x i +  f l u  . . . . .  [5] 

where the constant/3 = 0.27, and CD.,x~ is the time averaged value of the drag coefficient in the case 
of axisymmetric flow (Vmaxt = 0). Equation [5] is accurate within 1.8%. The drag coefficients reach 
their maximum at about t = 9 (see figure 3). The maximum drag coefficient CD .... can be expressed 
approximately by [5] but with fl = 1.05, and CD,xi here is the local value of the axisymmetric drag 
coefficient at the time of CD ..... Because the top and bottom vortex tubes have positive and negative 
circulations, respectively, the induced velocity due to the vortex tubes adds its magnitude to the 
base flow along the stagnation pseudo-streamline. This increased velocity causes the pressure at 
the stagnation point and the shear stresses in the upper and lower left regions to be higher than 
those of  the axisymmetric flow past a sphere. As a consequence, the drag is increased. 
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Figure 2. Pseudo-streamlines (left column) and contour lines of y-component vorticity (right column) in 
the principal plane at (a) t = 0, (b) 3, (c) 6, (d) 9, (e) 12, and (f) 15 for Re = 100, do~ = _ 1.5, a = 1, 

and v .... --- 0.738, with top-positive and bottom-negative circulations. 

3.2. Interactions of a sphere and a pair of vortex tubes with top-negative and bottom-positive 
circulations 

W e  cons ider  the same ini t ial  flow geomet ry  and  pa rame te r s  as those in sect ion 3.1 bu t  for  a pa i r  
o f  vor tex  tubes with top-nega t ive  and  bo t tom-pos i t ive  circulat ions.  

F igure  4(a) - ( f )  d i sp lay  the pseudo-s t reaml ines  (left co lumn)  and  the con tou r  lines o f  
y - c o m p o n e n t  vor t ic i ty  (r ight  co lumn)  in the pr inc ipa l  p lane  at  t = 0, 3, 6, 9, 12, and  15 for  
Re = 100, do~= ___ 1.5, a = 1 with Omaxt = 0.738 (Vm,x = 0.4). The  con tou r  values o f  the 
pseudo-s t reaml ines  and  the vor t ic i ty  are  the same as those in the previous  section. 

The  vor t ic i ty  con tou r s  in figure 4(a) - ( f )  show tha t  the two vor tex  tubes move  dow ns t r e a m slower 
than  the single vor tex  tube  in figure 5 o f  KES.  This  relat ive dece lera t ion  occurs  because  the veloci ty 
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magni tude at the center o f  each vortex tube equals that o f  the base flow minus that  induced by 
the other  vortex tube. 

The distance between the top pseudo-streamline and the bo t tom pseudo-streamline in figure 
4(a)-(c) is broader  near the segment connect ing the vortex tube centers than any other place along 
the stagnation streamline. This indicates that  the velocity near the middle o f  the segment between 
the vortex tube centers is lower than those upstream or downst ream of  the vortex tubes along the 
stagnation streamline. The induced velocity due to the vortex tubes is subtracted from the base 
flow near the stagnation pseudo-streamline. 

Figure 5 shows the drag coefficients o f  the sphere as a function o f  time for the same parameters  
as above. The drag coefficients are obtained for four  different total maximum induced velocities 
due to the vortex tubes, v . . . .  = 0.185, 0.369, 0.554, and 0.738 ( V m a x  = 0.1, 0.2, 0.3, and 0.4). The 
temporal  behavior  o f  the drag coefficients is different f rom that  o f  the case o f  the pair o f  vortex 
tubes o f  co-rota t ion as will be shown in section 3.3. The t ime-averaged value o f  the deviation o f  
the drag coefficient f rom that  o f  the axisymmetric flow past a sphere for all values o f  Vmax, is not  
negligible and decreases linearly as v . . . .  increases. The t ime-averaged drag coefficient CD .... may  be 
expressed by [5] but with the proport ional i ty  constant  fl = - 0.28, and CD.ax~ is the t ime-averaged 
value o f  the drag coefficient in the case o f  axisymmetric flow (v .... = 0). The drag coefficients reach 
their min imum at about  t = 11 (see figure 5). The min imum drag coefficient CD.m~, can be expressed 
approximately  by [5] but with fl = - 0.95, and CD.,,~ here is the local value o f  the axisymmetric 
drag coefficient at the time o f  Co.mm. Because the top and bo t tom vortex tubes have negative and 
positive circulations, respectively, the induced velocity due to the vortex tubes is subtracted from 
the base flow velocity along the stagnation streamline. This causes the pressure at the stagnation 
point  and the shear stresses in the upper  and lower left regions to be lower than those o f  the 
axisymmetric flow past  a sphere. Thus,  the drag is reduced. 

3 .3 .  I n t e r a c t i o n s  o f  a p a i r  o f  v o r t e x  tubes  o f  c o - r o t a t i o n  a n d  a sphere  

We consider the same initial flow geometry and parameters  as those in section 3.1 but for a pair 
o f  vortex tubes o f  co-rotat ion.  The base case calculation is that  o f  Re = 100, do~ = + 1.5, and 
o ' = l .  

Initially each vortex tube has its max imum induced velocity Vma, located at the edge o f  the core. 
Because the velocity and vorticity fields induced by one vortex tube influence those by the other, 

CD 
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Figure 3. Drag coefficient of the sphere as a function of time and Vm,xt for Re = 100, do~ = _+ 1.5, and 
g = 1, with top-positive and bottom-negative circulations. 
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Figure 4. Pseudo-streamlines (left column) and contour lines of y-component vorticity (right column) in 
the principal plane at (a) t = 0, (b) 3, (c) 6, (d) 9, (e) 12, and (f) 15 for Re = 100, do~ = + 1.5, a = 1, 

and Vmax, = 0.738, with top-negative and bottom-positive circulations. 

the to ta l  m a x i m u m  induced  velocity,  /)maxt, due to the two vor tex  tubes depends  on their  size and  

sepa ra t ion  d is tance  and  is in the range Vm,x ~< V . . . .  ~< 2V . . . .  Vmaxt equals  2Vmax when I do.I -- 0 and  
equals  Vmax when [do, l>>l. F o r  example ,  /)maxt = 0.59 for  Vmax = 0.4, do~ = + 1.5, and  tr = 1. 

In  sect ions 3.3.1 and  3.3.2, we invest igate the base  case. In  sections 3.3.3 and  3.3.4, we discuss 
the effects o f  the size and  the offset d is tance  o f  the vor tex  tubes and  Reyno lds  number ,  respectively.  

3.3.1. Flow structure. Figure  6(a)- ( f )  d i sp lay  the pseudo-s t reaml ines  (left co lumn)  and  the 
c o n t o u r  lines o f  y - c o m p o n e n t  vor t ic i ty  (r ight  co lumn)  in the pr inc ipa l  p lane  at  t = 1, 6, 10, 15, 
21, and  30 for  Re = 100, do, = + 1.5, a = 1, and  /)maxt = 0.59 (/)max = 0.4). The  c on tou r  values o f  
the pseudo-s t r eaml ines  are 0, ___0.02, _ 0 . 1 ,  +0 .3 .  The  c on tou r  values o f  the vor t ic i ty  are -t-0.4, 
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+0.8, _ 1.4, +2,  with the highest magnitude at the sphere surface. The solid and dotted lines in 
the figures represent, respectively, positive and negative values. 

The pseudo-streamlines shown in figure 6(a)-(f) resemble closely those for the interaction 
between a single vortex tube and a sphere which was described in KES. Since the description of  
the flow structure with the aid of the streamlines is given in KES, it will not be repeated here, and 
only the vorticity contours will be described here. 

The vorticity contours in figure 6(a) and (b) show that the vortex tubes not only are advected 
downstream but also rotate about each other. The contour lines of vorticity in the figures also show 
that viscous diffusion takes place. It is well known that two co-rotating point vortices located a 
distance apart in an inviscid flow rotate with constant angular velocity about the point located at 
the center of the segment connecting them while the separation distance held fixed. On the other 
hand, when two co-rotating vortex tubes are located a distance apart in an inviscid flow and the 
separation distance is small enough, they interweave as well as rotate about each other (Zabusky 
e t  a l .  1979; Overman and Zabusky 1982; Rangel and Sirignano 1989). 

Figure 6(c) and (d) show that the vortex tubes contact the boundary layer of the sphere and go 
around the bottom of  the sphere. The reason for the passage of  the vortex tubes around the bottom 
of the sphere rather than around the top is as follows. When the vortex tubes rotating 
counter-clockwise come close to the sphere boundary layer, they augment the magnitude of the 
vorticity in the lower boundary layer and reduce that of the vorticity in the upper boundary layer. 
Consequently, the vorticity in the lower boundary layer induces a velocity in the downward 
direction at the location of the vortex tubes with higher magnitude than that induced by the 
vorticity in the upper boundary layer• This downward induced velocity advects the vortex tubes 
below the sphere (KES). 

Figure 6(e) shows that the pairing vortex tubes merge into one vortex due to the interweaving 
and the viscosity. Figure 6(f) shows that the vorticity contours around the sphere approach that 
of the axisymmetric flow as the tubes are advected far downstream. 

A three-dimensional view of the pair of vortex tubes is examined by considering the y-component 
of  vorticity vector. Figure 7(a) and (b) show the views of  a three-dimensional contour surface of 
co, = 0.2 at t = 6 and 21, respectively, for the flow depicted in figure 6. The figures show a view 
looking down with an acute angle toward the y - z  plane. The ellipse in the figures is the boundary 
of  the spherical computational domain viewed at an angle. It appears as a circle when viewed 
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Figure 5. Drag  coefficients of  the sphere as a function of  time and Vma,, for Re = 100, dow = _+ 1.5, and 

a = I, with top-negative and bottom-posi t ive circulations. 
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Figure 6. Pseudo-streamlines (left column) and contour lines of  y-component vorticity (right column) in 
the principal plane at (a) t = 1, (b) 6, (c) 10, (d) 15, (e) 21, and (f) 30 for Re = 100, do~ = -t- 1.5, a = 1, 

and vm.x, = 0.59. 

normal to the principal plane. The sphere is at the center of  the domain in figure 7(a) and (b). Figure 
7(a) shows that the two vortex tubes rotate about  each other. Figure 7(b) demonstrates that the 
pair of  vortex tubes merge after some time. 

The resemblance of  the streamline pattern between the case of  a pair of  vortex tubes and the 
case of  a single vortex tube indicates that the force and moment  on the sphere due to a pair of  
vortex tubes may be close in value to those due to a single vortex tube. In the next subsections, 
we discuss the lift, moment ,  and drag coefficients for the pair of  vortex tubes and compare them 
with those for a single vortex tube. 

3.3.2. Lift, moment, and drag coefficients and effect of  tube circulation. Figure 8 shows the lift 
coefficients of  the sphere as a function of  time for Re = 100, do~ = _ 1.5, and tr = 1. The lift 
coefficients are computed for four different total maximum induced velocities Vm,xt due to the pair 
of  vortex tubes, with magnitudes equal to 0.148, 0.295, 0.443, and 0.590 (Vr,,x = 0.1, 0.2, 0.3, and 
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(a) 

(b) 

F igure  7. A view of  th ree-d imens iona l  con tou r  surfaces of  09~ = 0.2 at  (a) t = 6 and  (b) t = 21 for the flow 
depic ted in figure 2. 



U N S T E A D Y  F L O W  I N T E R A C T I O N S  13 

CL 

0.8 

0.4 

0.0 

-0.4 

-0.8 

. . . .  i . . . .  i . . . .  i . . . .  i . . . .  

- -  vm~t = 0.148 
. . . . .  Vmax~ = 0.295 

,,'~'\, - . . . . . .  ~ l m a x t  = 0 . 4 4 2  

." ,----,,'~ . . . . .  Vr~xt = 0.590 
..... f j _ _ . . ~  v,n,,~, = 0.148" 

'l ~, \ / /  ' ' /  

~, \ \ \  /// ~ i,/ 

' \  / 

-1.2 . . . . . . . . . . . . . . . . . . . . . . . .  
0 5 10 15 20 25 

t 
Figure 8. Lift coefficients of the sphere as a function of time and Vmax, for Re = 100, do, = _ 1.5, and a = 1, 

0.4) normalized by free stream velocity. Due to the sudden placement of  the sphere into the stream, 
it takes a short time (0 < t < 0.8) for the initial flow perturbations to vanish. 

When the pair of  vortex tubes approach the sphere (0 ~< t < 9), they produce upwash resulting 
in a positive lift force on the sphere. The maximum positive lift coefficient CL .... ~ occurs at about  
t = 6.8. On the other hand, when the vortex tubes pass the sphere, they produce downwash and 
higher fluid velocity near the bot tom of  the sphere than the top due to the shear flow imposed by 
the vortex tubes resulting in a negative lift force. The magnitude of the negative lift is greater than 
the positive lift. The maximum negative lift coefficient C L, max2  O c c u r S  at about  t = 12.2. CL . . . .  I and 
CL.max: are linearly proport ional  to the total maximum induced velocity. The maximum positive lift 

coefficient CL .... l is expressed by 

C L  . . . .  1 = CVmaxt ,  [6] 

where the proportionality constant c = 0.88. The maximum negative lift coefficient CL,max2 is also 
expressed by [6] but with c = - 1.62. After the lift coefficient reaches its maximum negative value, 
it decays quickly towards zero because the vortex tube vorticity is diffused in the sphere wake. The 
time averaged lift coefficient (averaged over a time span between t = 0.8 and the maximum time 
24.5) for all values of  Vmax, is negative and small (O(10-2)). As mentioned earlier, the behavior of  
CL(t) during the period 0 < t < 0.8 is influenced by the initial flow perturbation, and thus its value 
during this initial period is excluded from the averaging process. The root mean square CL,,~s of 
the lift coefficient as a function of time is also linearly proport ional  to Umaxt with c = 0.7. 

The lift coefficient of  the sphere interacting with a single vortex tube as a function of  time is 
also shown as a reference (marked with an asterisk) in figure 8 for Re = 100, do, = 0, and a = 1 
with Vm~x, = Vma. ----- 0.148. Figure 8 shows that the lift coefficient of  the sphere interacting with a pair 
of  co-rotation vortex tubes as a function of time is approximately the same as that of  the sphere 
interacting with a single vortex tube for the parameters given above if the same total maximum 
induced velocity is used in both cases. The dependency of this phenomenon on the parameters (do,, 
a,  and Re) will be discussed in the following subsections. 

Figure 9 shows the temporal development of  the moment  coefficients for the sphere under the 
same conditions as figure 8. 

When the vortex tubes pass the sphere, the front stagnation point on the sphere is shifted above 
the plane x = 0 due to the downwash. This causes higher shear stress in the lower left region 
compared to the upper  left region resulting in a positive (counter-clockwise) torque on the sphere. 
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The upward shift o f  the front s tagnation point  also causes the shear stress to be higher in the top 
and upper  right regions than in the bo t tom and lower right regions resulting in a negative torque 
on the sphere. However,  the effect o f  this negative torque is diminished by the shear flow induced 
by the vortex tubes across the sphere which produces high shear stress at the bo t tom of  the sphere. 
As a consequence,  a net high positive torque acts on the sphere. The maximum positive moment  
coefficient Cm . . . .  occurs at t = 11.5. Cm . . . .  is approximately  linearly propor t ional  to v .... with 
c = 0.11. 

When  the vortex tubes approach  the sphere or  are relatively far away f rom the sphere, the effect 
o f  the shear flow induced by the vortex tubes across the sphere is small, resulting in a net weak 
torque on the sphere. 

The time averaged momen t  coefficient for all values o f  Vmax, is positive and small O(10 3). The 
rms momen t  coefficient CM . . . .  is approximately  linearly propor t ional  to v .... with c = 0.043. We 
note that  the torque depends only the distribution o f  the shear stresses (rr0 and rr+) and is relatively 
small compared  to the lift force. 

The momen t  coefficient o f  the sphere interacting with a single vortex tube as a function of  time 
is also shown as a reference (marked with an asterisk) in figure 9 for Re = 100, do~- = 0, and a = 1 
with v .... = Vm,x = 0.148. The pat tern o f  the momen t  coefficient o f  the sphere interacting with a pair 
o f  vortex tubes as a function of  time is similar to that o f  the sphere interacting with a single vortex 
tube for the pa ramete r s  given above, but the max imum moment  coefficient o f  the former  is lower 
than that  o f  the latter. This shows that  the momen t  coefficient is more  sensitive to the offset distance 
than the lift coefficient. This will be discussed in the next section in detail. 

Figure 10 shows the drag coefficients o f  the sphere as a function o f  time for the same conditions 
as figure 8. The drag coefficients are computed  for four different values of  v ..... as in figure 8, in 
addit ion to Vmaxt = 0 which corresponds to the axisymmetric flow without  the vortex tubes. 

As discussed earlier, the sudden placement o f  the sphere in the flow results in initially large values 
o f  shear stress and pressure on the sphere, and hence a large drag as shown in figure 10. When  
the vortex tubes approach  the sphere, the pressure at the front stagnation point  is lower than that 
o f  the axisymmetric flow past  a sphere due to the low pressure at the center o f  the vortex tube. 
Also, the max imum shear stresses in the upper  and lower regions o f  the sphere are lower than those 
o f  the axisymmetric flow. This causes the drag on the sphere to be lower than that o f  the 
axisymmetric flow without  the vortex tube. As the vortex tubes move a round  the bo t tom of  the 
sphere, the front  s tagnation point  is shifted above the plane x = 0 due to the downwash.  
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Figure 9. Moment coefficients of the sphere under the same conditions as figure 7. 
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Figure 10. Drag coefficients of the sphere under the same conditions as figure 7. 

Consequent ly ,  high pressure  and  high shear  stress act in the upper  and  lower  left regions,  
respectively.  This  increases the d rag  dur ing  the pe r iod  9 < t ~< 13.4. F o r  t > 13.4, the d rag  
a p p r o a c h e s  tha t  o f  the ax i symmet r ic  flow as the vor tex  tube moves  fur ther  downs t ream.  The t ime 
averaged  value o f  the dev ia t ion  o f  the d rag  coefficient f rom tha t  o f  the ax i symmetr ic  flow pas t  a 
sphere for  all values o f  v . . . .  is near ly  zero (O(10-4)). 

The  pa t t e rn  o f  the d r ag  coefficient o f  the sphere in terac t ing  with a pa i r  o f  vor tex  tubes as a 
funct ion  o f  t ime is s imi lar  to that  o f  the sphere in teract ing with a single vor tex  tube for the 
pa r ame te r s  given above  ( compared  with figure 11 in KES) ,  but  the largest  devia t ion  o f  the former  
f rom the case o f  the ax i symmedt r i c  flow occurs  ear l ier  than  tha t  o f  the latter.  The  reason is that  
due  to the ro t a t i on  a b o u t  each other ,  one o f  the vor tex  tubes in the former  app roaches  the sphere 
fas ter  than  the vor tex  tube  in the latter.  

3.3.3. Effects o f  the size and the offset dbtance o f  the vortex tubes. The effects o f  the size o f  the 
vor tex  tubes  on the flow field are s tudied by pe r fo rming  c ompu ta t i ons  s imilar  to those in the 
prev ious  sect ion for  Re = 100, doe = + 1.5, and  five different sizes o f  the vor tex  tubes,  a = 0.25, 
0.5, 2, 3, and  4 in add i t i on  to the base case tr = 1. 

Table  1 shows CL . . . .  I,  eL,max2, e L  . . . . .  CM . . . . .  and CM . . . .  as a funct ion o f  the vor tex  tube size which 
covers  six different  init ial  radi i  o f  the vor tex  tube,  a = 4, 3, 2, 1, 0.5, and  0.25, for v . . . .  : 0.1. 
A n o t h e r  c o m p u t a t i o n  with different Vmaxt showed tha t  all the lift and  m o m e n t  coefficients are l inear ly 
p r o p o r t i o n a l  to vm,x, a t  each a.  W h e n  a >~ 2, CL .... ~ and  CL.rm~ become independent of  a ,  but  the 
magn i tudes  o f  CL.~,x2, CM .. . . .  and  CM .... for  a = 4 are smal ler  than  those for  ~ = 2 and  3. W h e n  

Table 1. Maximum positive and negative lift coefficients, rms 
lift coefficient, maximum moment coefficient, and rms moment 
coefficient as a function of the size of vortex tube for Re = 100 

and do~ = 1.5 with Vm~ = 0.1 

a CLm.xr CLm.x2 CL .... CM .... CM .... 

4 0.111 --  0 .186  0 .103 0.011 0.0051 
3 0.111 --  0 .196  0 .102  0 .013  0 .0053  
2 0 .108  - 0 .197  0 .094  0 .013 0 .0053  
1 0 .088  --  0 .162  0 .070  0.011 0 .0043  
0.5 0 .058  --  0 .116  0 .046  0 .0065  0 .0023  
0 .25  0 .034  --  0 .070  0 .027  0 .0034  0 .0012  

IJMF 23/I--B 
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F i g u r e  11. R m s  lift coefficients  o f  the  sphere  as a func t ion  o f  Idol[ fo r  Re = 100 a n d  a = 4. 

a approaches  zero, all the coefficients tend to be propor t ional  to (O'Vmaxt) o r  (arm,x) which is 
propor t iona l  to the circulation of  the vortex tube. For  example, CL .... is expressed by 

CL,rms : Cll)maxt, 2 ~< a ~< 4 

= C2Umaxt an, 0.25 ~< a < 2, 0.75 >~ n ~> 0.3, [7] 

where the constant  c, = 1 and c2 = 0.7, and n depends on a and should approach  unity as a reaches 
zero. For  CL .... ~, cl = 1.1 and c2 = 0.88. CL.max2, CM ..... and C~ .... for a ~< 3 are also expressed by 
[7] with c1=  - 2  and c2= - 1 . 6 5 ,  c ~ = 0 . 1 3  and c 2 = 0 . 1 1 ,  and c ~ = 0 . 0 5 3  and c 2 = 0 . 0 4 ,  
respectively. The time averaged value o f  the deviation o f  the drag coefficient f rom that  o f  the 
axisymmetric flow past  a sphere for all values o f  a is nearly zero (000 -4 ) ) .  

Compar ing  the results in table 1 (based on v .... ) with those o f  the sphere interacting with a single 
vortex tube (KES, table 4 (based on Vmax)), it is found that the magnitudes o f  the lift coefficients 
in table 1 are within 2 - 2 0 %  of  those in KES,  with the largest deviation occurr ing at a = 0.25. 

Note  that  Ce,max2, CM ..... and CM .... for a = 4 are, respectively, smaller than those for a = 2 and 
3 due to the shear flow effect explained in KES. 

Now,  the effects o f  the offset distance on the flow field are investigated by varying doe for 
Re = 100 and a = 4 .  The computa t ion  was performed for do~= 0, +1 ,  + 2 ,  +3 ,  and _+4 in 
addit ion to the base case do~ = + 1.5. Note  that  the case o f  do~ = 0 corresponds to the interaction 
between a single vortex tube and a sphere. 

It is found that  CL .... ~, CL,m,x2, CL . . . .  CM ..... and CMrms for each do~ are linearly propor t ional  to 
Vm,x, as in the case o f  do~ = _ 1.5. The tr iangular symbols in figure 11 show CL .... as a function 
o f  Idol] for Re = 100 and a = 4 while the max imum induced velocity (or the circulation) o f  each 
vortex tube is kept as a constant ,  Vm,x = 0.2. The tr iangular symbols show that  CL .... decays rapidly 
as [do~l > 0. On the other hand, the circular symbols in figure 11 show CL .... as a function o f  I do~1 
for Re = 100 and a = 4 while the total max imum induced velocity due to the two vortex tubes is 
kept as a constant ,  Vm,xt = 0.2. The circular symbols show that the magnitudes o f  the rms lift 
coefficients for do~= + 1, +1 .5 ,  -+2, + 3 ,  and + 4  are close to that  for do~= 0. The behavior o f  
CL .... j and CL.m,x2 as a function o f  ]do~[ is similar to that  o f  CL ..... 

Examinat ion o f  the effect o f  the offset distance for a = 1 and 2 shows that  the lift coefficient 
o f  the sphere interacting with a pair  o f  vortex tubes as a function o f  time is nearly identical to 
that  o f  the sphere interacting with a single vortex tube if the separation distance between the tube 
centers is less than 2 x / a  vortex tube diameter for Re = 100 and v .... instead o f  vm,. is used in the 
former. 

The tr iangular symbols and the circular symbols in figure 12 show CM,~, as a function o f  [do~] 
for the same parameters  as used for CL .. . .  Figure 12 shows that  the magni tude of  the rms momen t  
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coefficient decays more rapidly than that of  the rms lift coefficient as do~ increases. The behavior 
of  CM .... as a function of  do~ is similar to that of CM ..... The moment coefficient of  the sphere 
interacting with a pair of  vortex tubes as a function of  time is nearly identical to that of  the sphere 
interacting with a single vortex tube if the separation distance between the tube centers is less than 
x/~ vortex tube diameter for Re--- 100 and Vma~, instead of  V~,ax is used in the former. 

3.3.4, Effects of Reynolds number. Computations like those in section 3.3.2 are made for four 
different Reynolds numbers in the range of 20 ~< Re ~ 80, do~ = _+ 1.5, and 1 ~< tr ~< 4 in addition 
to the base case Re = 100. 

A result like that shown in section 3.3.3 for Re -- 100 is obtained. CL .... ~ and CL,~m, are linearly 
proportional only to Vmax, and independent of  a when tr/> 2 at fixed Reynolds number as in the 
case of Re = I00. CL .... ) dependence on Reynolds number may be expressed by 

CL .... 1 = Avm,xtR&, [8] 

where A = 8.9 and P = - 0.45 for 2 ~< a ~< 4. CL.~m, may be also expressed by [8] with A = 8.1 and 
P = - 0 . 4 5  for 2 ~< a ~< 4. CM .... and Cu,~., may be also represented by [8] with A = 5.5 and 
P = - 0.83 for the former, and A = 3.1 and P = - 0.88 for the latter for 2 ~< ~ ~< 3. 

Now, the effect of  the offset distance for 20 ~< Re ~< 80 in addition to the base case Re = 100 
is discussed. 

The triangular symbols in figure 13 show CLsms as a function of  t do~[ for Re = 20 and ~ = 4 
while the maximum induced velocity (or the circulation) of  each vortex tube is kept as a constant, 
Vmax = 0.2. The triangular symbols show that CL .... decays rapidly as Ido~l > 0. On the other hand, 
the circular symbols show CL . . . .  as a function of [doll for Re = 20 and cr = 4 while the total 
maximum induced velocity due to the two vortex tubes is kept as a constant, Vmaxt = 0.2. The 
circular symbols show that the magnitudes of  the rms lift coefficients for do~ = _ 2 and _ 4 are 
close to that for do~ = 0. The behavior of  CL .... ~ and CL,max2 a s  a function of  Ido~l resembles that 
of  CL . . . . .  

The results for the range of ~r values indicate that the lift coefficient of  the sphere interacting 
with a pair of  co-rotation vortex tubes as a function of  time is nearly identical to that of the sphere 
interacting with a single vortex tube if the separation distance between the tube centers is less than 
2x//~ vortex tube diameter for Re = 20 and v .... instead of  Vmax is used in the former case. The same 
result as above was obtained at different Reynolds numbers, Re = 40, 60, and 80. 

The triangular symbols and the circular symbols in figure 14 show CM .... as a function of Ido~l 
for the same parameters as used for CL ..... The figure shows the magnitude of  the rms moment 
coefficient decays more rapidly than that of  the rms lift coefficient as do~ increases. The behavior 
of  CM . . . .  as a function of  do~ resembles that of  CM . . . . .  It is found that the moment coefficient of 
the sphere interacting with a pair of  vortex tubes as a function of  time is nearly identical to that 
of  the sphere interacting with a single vortex tube if the separation distance between the tube centers 
is less than x/~ vortex tube diameter for Re = 20 and v .... instead of  Vm,x is used in the former 
case. The same result as above was obtained at different Reynolds numbers, Re = 40, 60, and 80. 

3.4. Interactions of an array of vortex tubes of co-rotation and a moving sphere 

Our results for the cases of  a fixed spherical particle interacting with a single advecting vortex 
and with an advecting pair of  vortices can now be used to calculate the trajectory of  a moving 
spherical particle interacting with an array of co-rotating vortex tubes. Counter-rotating vortices 
are less interesting since they produce no lift or deflection. Studying these interactions can improve 
our understanding of  the behavior of  a particle (or droplet) interacting with eddies of comparable 
length scale in a turbulent flow. For this study, the array will be a linear arrangement of single 
vortices. Since a single vortex and a pair of  co-rotating vortices produce comparable effects on the 
sphere, this choice should not be critical. 

Figure 15 shows the initial flow geometry where a spherical particle is injected into an array of 
infinite number of  counter-clockwise rotating vortices which are located on the negative z-axis with 
center-to-center nondimensional distance of 24. Since the life time of  a vortex tube is short 
(2/rO'/Vmax) compared to the travel time (or life time) of  the particle (or droplet), it is assumed that 
the next vortex with the same strength as the first vortex is generated when the sphere passes the 
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first vortex. The deflection of the moving sphere will cause the offset distance to vary from one 
collision with a vortex tube to the next. Therefore, do~ is a time-dependent quantity. 

We assume that the particle is constrained to move only in the x - z  plane. The aim is to calculate 
the trajectory in the two-dimensional plane from the already-known time evolution of Co(t) and 

CL(t) as given by KES. The particle trajectory as a function of time is computed by solving the 
following system of two ordinary differential equations which are the nondimensional form of the 
Newton's equation of motion in the z and x directions 

d ~  3 
dt 8pr ( -  CD(t)COS 0 -- CL(/)sin O)(U 2 + U2~) [9a] 

dUe 3 
dt - 8pr ( -  Co(t)sin 0 + CL(t)COS 0)(U 2 + U2~), [9b] 

where U: and U~ are, respectively, the sphere velocities in the z and x directions, tan 0 = U x / ( -  U.), 
and pr is the ratio of the particle density to the fluid density. Initially, 0 = 0. The term (U. 2 + U2~) 
arises since the velocities are normalized by the initial particle velocity while the drag and lift 
coefficients are normalized by the instantaneous particle velocity. The gravity force is neglected in 
this formulation. 
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Our numerical results (KES) for the time-dependent lift coefficient of a spherical particle 
interacting with a single vortex tube depends on the offset distance don, the vortex core size a, and 
Reynolds number Re and can be summarized as: 

CL(t)=A[CL(t)]b e x p ( ~ ) f ( R e ,  Vmax) for Cx/~<~do~<<. Dx//-~, [10] 

where the following combinations of values apply (table 2). 

Table  2. 

A B C D 

1.15 0.3 - oo - 0.7 
1 0.1 -- 0.7 0 
1 0 0 1 
e ° '  -- 0.1 1 1.7 
1.15e °3 0.3 1.7 oo 

Also, [CL(t)]b is the lift coefficient for the base case where Re = 100 and don = 0 with Vmax = V . . . .  b, 
f iRe,  Vmax) = (lO0/Re)mVmax/V .... b, and the exponent m is given by table 3. 

Table  3. 

m o- l 

0.375 1 0 ~< t ~< 9 
0.45 1 9 < t ~< 24 
0.44 2~<cr~<4  0 ~ < t ~ < 9  
0.51 2 ~ < a ~ < 4  9 < t ~ < 2 4  

The time-averaged drag coefficient of the sphere in the flow with a vortex tube differs by 0.01-5 % 
(depending on the offset distance) from the time-averaged drag coefficient of the axisymmetric flow 
for Re = 100 and Vmax = 0.2. (Refer to [19] in KES.) Therefore, the time-dependent drag coefficient 
in [9a] and [9b] is approximated by the time-dependent drag coefficient obtained from the 
axisymmetric flow generated by a spherical particle injected into a quiescent fluid. The spherical 
particle in this flow experiences the drag force and thus is retarded. This axisymmetric drag 
coeffÉcient was computed as a function of time and instantaneous Reynolds number by using the 
code which has been developed for the time-dependent axisymmetric flow. The torque on the sphere 
is neglected since the magnitude of the moment coefficient is small and less than 8% of the lift 
coefficient magnitude (table 4 of KES). 
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Figure 15. Initial flow geometry for a sphere injected into an array of infinite number of vortex tubes. 

Figure 16 shows two trajectories of the sphere during the dimensionless time period between 0 
and 24 for initial particle Reynolds numbers 50 and 100 with density ratio 200 (which is the ratio, 
for example, of n-octane density to that of air under 10 atmospheres of pressure). The initial vortex 
size is three times the sphere radius, and the initial offset distance of  the sphere is zero. The initial 
maximum induced velocity of the vortex tube is 0.2 normalized by the initial sphere velocity. The 
sphere initially moves upward due to the vortex upwash and then moves downward due to the 
vortex downwash. The maximum positive deflection for the case of Re0 = 50 is higher than that 
of  Re0 = 100. 

Figure 17 shows two trajectories of  the sphere which are traced from the initial injection beyond 
the time period of figure 16 until particle Reynolds number reaches unity for initial particle 
Reynolds numbers 50 and 100 with the same initial parameters as in figure 16. Since the final 
Reynolds number is small, these trajectories are approximately those corresponding to the whole 
particle motion until it stops relative to the fluid. A counter-clockwise rotating vortex tube produces 
not only upwash downstream of itself and downwash upstream of  itself but it also causes a shear 
flow across the sphere when it passes the sphere. The combined effect of the downwash and the 
shear flow causes the magnitude of the maximum negative lift to be greater than the maximum 
positive lift magnitude. Therefore, the average lift coefficient averaged over the time span 24 (the 
interaction time with one vortex tube) is one order of magnitude lets than the rms lift coefficient 
and negative due to the shear flow effect. This small negative value of  the average lift coefficient 
becomes important when the sphere interacts with an array of many vortices. Thus, the sphere 
travels upward only for the short initial time period and then moves downward for the most of 
the time until it stops. The final deflection ratios defined by the ratio of the final position xr to 
zf of  the sphere are 1/36 for the case of  Re0 = 100 and 1/34 for the case of  Re0 = 50. However, 
the final deflection for the case of Re0 = 100 is higher than that of Re0 = 50, because the sphere 
for the case of Re0 = 100 possesses higher initial momentum and it travels farther than that of 
Re0 = 50. 

Figure 18 shows four trajectories of the sphere during the dimensionless time period between 
0 and 24 for the density ratio 25, 50, 100, and 200 with Reynolds number 100 and the same 
parameters for r~, do~, and Vmax as in figure 16. A sphere with lower density ratio initially deflects 
more than a sphere with higher density ratio as shown in figure 18. Figure 19 shows four trajectories 
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Figure 16. Two trajectories of the sphere during the time period between 0 and 24 for initial Reynolds 
numbers 50 and I00 with density ratio 200. 
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of the sphere which are traced from the initial injection until particle Reynolds number reaches unity 
for the density ratio 25, 50, 100, and 200 with the same initial parameters as in figure 18. However, 
the final transverse displacement increases with density ratio because the sphere with higher density 
ratio possesses higher initial momentum and it travels farther than the sphere with lower density ratio. 

The larger Vm,x causes the larger sphere deflection; however, the sphere deflection is not linearly 
proportional to Vm,x due to the nonlinearity of  [9a] and [9b]. 

The results of  figures 16 and 18 indicate that the sphere would experience slightly lower drag than 
that of a sphere subjected to an axisymmetric flow when it passes the first vortex tube. This lower 
drag is caused by the upward motion of the sphere due to the upwash of the approaching vortex tube, 
and thus the center of the vortex tube is located below the front stagnation point of  the sphere. This 
causes lower dynamic pressure ahead of the front stagnation point. However, the sphere would 
experience higher drag eventually when it passes more than one vortex tube and travels downward. 
Due to the downward motion, the vortex tubes are located above the front stagnation point of the 
sphere, causing higher dynamic pressure ahead of the front stagnation point. 

The original computations in KES and in section 3.3 were made for a nondimensional time 
duration of 24 and 24.5, respectively. However, the trajectory calculations presented in figures 17 
and 19 use the basic information from those original computations to yield trajectory predictions 
for much longer periods. 

4. CONCLUSIONS 

In order to improve the understanding of  the physics of interaction between a particle and eddies 
of  comparable length scale in a carrier flow, the unsteady, three-dimensional, incompressible, 
viscous flow interactions between a pair of vortex tubes advected by a uniform free stream and 
a spherical particle suddenly placed and held fixed in space were investigated numerically for a 
range of  particle Reynolds number 20 ~< Re ~< 100. 

When the top and bottom vortex tubes have positive and negative circulations, respectively, the 
magnitude of the induced velocity due to the vortex tubes is added to the base flow velocity along 
the stagnation streamline. This causes the pressure at the stagnation point and the shear stresses 
in the upper and lower left regions to be higher than those of the axisymmetric flow past a sphere, 
thus increasing the drag. On the other hand, when the top and bottom vortex tubes have negative 
and positive circulations, respectively, the induced velocity due to the vortex tubes is subtracted 
from the base flow velocity along the stagnation streamline. This causes the pressure at the 
stagnation point and the shear stresses in the upper and lower left regions to be lower than those 
of  the axisymmetric flow past a sphere, thus reducing the drag. The lift and moment are zero for 
this symmetric configuration. 

The interactions between a sphere and a pair of co-rotating cylindrical vortex tubes initially 
located ten radii upstream from the center of  the sphere were investigated. The lift and moment 
coefficients of the sphere interacting with a pair of vortex tubes as a function of time are nearly 
identical, respectively, to those of the sphere interacting with a single vortex tube if the separation 
distance between the tube centers is less than 2V/~ vortex tube diameter for the lift coefficient and 
less than ~ vortex tube diameter for the moment coefficient; here, v . . . .  instead of  Vmax is used in 
the case of  a pair of vortex tubes, where Vm,x is the maximum induced velocity due to one vortex 
without presence of the other and v .... is the total maximum induced velocity due to the pair of 
vortices. In particular, lift and moment coefficients are linearly proportional to the maximum 
induced velocity. The moment coefficient is negligible compared to the lift coefficient. 

The two-dimensional trajectories of  a spherical particle interacting with an array of vortices 
whose sizes are comparable to the sphere size have been examined. The time-dependent drag and 
lift forces (KES) for the case of a spherical particle interacting with a single vortex were used to 
calculate the two-dimensional trajectory of  a moving spherical particle interacting with an array 
of vortex tubes of co-rotation. The present results show that the shear flow across the sphere 
induced by a vortex tube is responsible for the net deflection of a sphere interacting with an array 
of  vortex tubes. Thus, the sphere eventually deflects in the direction of increasing relative velocity. 
The deflection ratio (ratio of  sphere final location in the z and x directions) of  the sphere increases 
with decreasing initial Reynolds number and with decreasing density ratio. However, the total 
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deflection increases with increasing the initial Reynolds number and the density ratio because 
higher momentum causes the sphere to travel farther. 

The temporal variations of CL, CM, and CD (figures 8-10) indicate that a significant change in 
CL, CM, and CD occurs only when the vortices are in the proximity of the sphere, otherwise they 
remain nearly negligible. This result will be the same for the case of a particle drifting with its 
terminal velocity and interacting with the same vortices. That is, the start-up transient during the 
first few residence times does not affect this interaction because the computations begin with the 
vortices far upstream. 
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